[1]

Mark schemes		
Q1. B	CH₄	[1]
Q2. C	XeF₄	[1]
Q3. A	H–O	[1]
Q4. D	They form giant structures.	[1]
Q5. B	SO2	[1]
Q6. D	silicon dioxide	[1]
Q7. C	C₅H₅Cl	[1]
Q8. B	NH3	

Q9.		
В	graphite	[1]
Q10. A		
	Kevlar	[1]
Q11. Shapes:	Must show in an NCI	
	Must show ip on INCI ₃ 1	
	Must have some indication that shape is 3D	
Name of shape	of NCl₃ = Pyramidal	
	Allow tetrahedral	
Bond Angle = 10)9.5°	
-	Allow 109 – 109.5° 1	
(4 bp and 0 lp) e as possible	electron pairs repel equally / electron pairs repel to be as far apart	
	Do not allow atoms repel equally	
	Allow bonds repel equally 1	[5]
Q12.		
D	NH₄CI	[1]
Q13.		
(a) M1 idea	that pentan-2-ol has stronger intermolecular forces M1 idea that hydrogen bonds are stronger than van	

(b)

	der Waals' forces Penalise M1 for any reference to idea of breaking covalent bonds	1
M2	pent-1-ene has van der Waals' forces (only) <i>M2</i> allow London forces or temporary/induced dipole forces or vdW forces for van der Waals' forces	1
М3	pentan-2-ol (also) has hydrogen bonds M3 Ignore reference to dipole-dipole forces in pentan-2-ol	1
M1	reagent = <u>conc</u> sulfuric acid or <u>conc</u> phosphoric acid M1 penalise incorrect name or formula (even if both name and formula are given)	1
M2	condition = hot / temperature in range 150-200°(C) $CH_3 - CH_2 - CH_2 - CH_3 - CH_3$ H^+ H^+ $CH_3 - CH_2 - CH_2 - CH_3 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_3 - CH_3$ H^- $CH_3 - CH_2 - CH_2 - CH_3 - CH_3$ H^-	
	M2 allow high temperature M2 reagent must indicate an acid in some way in order for M2 to be awarded M1/2 allow 1 mark if H ₂ SO ₄ /H ₃ PO ₄ given as reagent and conc(entrated) given as condition	1
М3	curly arrow from lone pair on alcohol O to H ⁺ <i>M</i> 3-5	

penalise **M3/4/5** for any additional arrow(s) in addition to the correct one at each stage If incorrect reactant (or product if shown), maximum 2 marks of **M3-5 Alternatives for M3**

1

1

M4 curly arrow from C-O bond to O on correct intermediate

M5 arrow from C-H bond on C1 to C-C bond between C1 and C2 on correct carbocation

allow **M4** and **M5** concurrent: H_{3} -CH₂-CH₂-CH₂-CH₂-CH₂ $H_{CH_{2}}$

[8]

1

Q14.

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.				
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.			
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.			
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are			
presented in a logical order. Level 0 0 marks 0 marks				

Indicative chemistry content

Stage 1 electron pairs

1a XeF₄ 4BP and 2LP around Xe 1b PF₃ 3BP and 1LP around P

Stage 2 explanation of shapes

2a XeF₄ is square planar Or

 $2b \ PF_3$ is pyramidal (allow tetrahedral) Or

2c Electron pairs repel as far as possible or Lone pair repels more than bonding pairs

Stage 3 IMF

The relative strength of the intermolecular forces in the molecules must be explained to gain maximum marks.

3a XeF₄ has vdw forces and PF₃ has dipole-dipole forces (and vdw)

3b Stronger/more intermolecular forces in XeF4

3c Due to larger M_r or more electrons or larger molecules or packs more closely together

[6]

[1]

1

1

Q15.

Α

Q16.

(a)	Fluoride ion has (two) fewer protons/lower nuclear charge
	Do not allow fluorine, but allow fluorine ion.
	Any reference to different numbers of
	electrons in the ions loses M1
	Weaker attraction between nucleus and (outer) electrons
	Allow answers in terms of sodium <u>ion</u>
	but must be explicit.

Ignore references to atomic radius

(b) (Electrostatic) forces of <u>attraction</u> between oppositely charged ions/Na⁺ and F⁻
 Mention of IMF, covalent, macromolecular, metallic, electronegativity of ions loses both marks

[13]

				1
	Lots of energy nee Allow s Allow s (need t	ded to overcome/b strong ionic bonding strong forces/bonds to be broken)	reak forces of attraction	1
(c)	Type of Bond: Coo If just c	rdinate bond / dativ covalent, then do no	e (covalent) bond ot award M1 but ma	urk on 1
	Explanation: A (lor Allow b	ne) pair of electrons both electrons (in th	is donated <u>from F</u> e shared pair) com	e from F 1
(d)				
	Shape	$\begin{bmatrix} F \\ F \\ F \\ F \end{bmatrix}^{-} \begin{bmatrix} F \\ F \\ F \end{bmatrix}^{-}$	$\begin{bmatrix} H & F & H \end{bmatrix}^{+}$	
	Name of shape	Octahedral	Bent / V-shaped / angular	
	Lone p Ignore Mork ii	airs on H₂F⁺ are es missing charges	sential (can be sho	wn in lobes)
	Mark Ir	ιαερεπαεπτιγ		4
(e)	$\Delta H = \Sigma \Delta H (Bonds the second secon$	oroken) - ΣΔΗ(Bond //1 if 2785 <u>and</u> 1990 //1 if 1961 <u>and</u> 1172	ds Formed) 6 seen (or ? seen)	
	-179 = 2(412) + 83	7 + 2(562) – [348 +	- 4(412) + 2(C—F)]	1
	-179 = 2785 - (199	96 +2(C—F))		
	2(C—F) = 968			
	M3 cor that M2	nsequential on any 2 is for 2(C-F)	M2 if it is clear	1
	C—F = 484			
	-484 sc	cores 2		1

Q17. A

[1]

[1]

Q19. D

Q18. C

CH₃CH₂COOH

[1]

Q20.

1

1

Hydrogen bonds are stronger/est intermolecular force Allow more energy to break/overcome hydrogen bonding Allow converse arguments 1 (C) POCl₃: allow any shape showing 1 double bond between P and O and 3 P-Cl bonds 1 CIF₄: allow any shape showing 4 CI-F bonds and 2 lone pairs 1 (distorted) Tetrahedral 1 Square planar 1 90° 1 [11] Q21. D [1]

Q22.

K (a)

Allow diagram with 2 bonds and 3 lone pairs

	Linear	1
	<u>180°</u>	1
(b)	Lone pairs repel more than bond pairs	1
	Allow idea of reducing bond angle	-

bond angle will be lower (than regular tetrahedral angle) / bond angle of 103-106°

(c)	Van der Waals forces Allow London forces, dispersion forces, induced dipole-dipole		
	Apply List for M1. Allow M2 if vdW mentioned in M1, otherwise CE=0	1	
	(Uneven distribution of electrons in) one molecule <u>induces</u> dipole in neighbouring/another/nearby <u>molecule</u>	1	
	symmetrical molecule / dipoles cancel		
	OR		
	no hydrogens bonded to F (N or O), therefore no hydrogen bonding	1	[8]
Q23.			
C			[1]
Q24. D			
			[1]
Q25.			
(a)	Power of an atom to attract a pair of electrons in a covalent bond. <i>Allow power of an atom to attract a bonding/shared</i> <i>pair of electrons</i> <i>Allow power of an atom to withdraw electron</i> <i>density from a covalent bond</i>		
	Not lone pair Not Element	1	
(b)	<u>Difference in electronegativity</u> leads to bond polarity If chloride (ions) mentioned then $CE = 0$	1	
	(dipoles don't cancel therefore the molecule has an overall permanent dipole) and there is an attraction between ∂ + on one molecule and ∂ - on another		
	partial charges should be correct if shown and can score M2 from diagram		
(c)	-	1	

SiH ₄	Tetrahedral		1 shape &
------------------	-------------	--	-----------

			no tick
PH₃	Pyramidal (trigonal) Allow tetrahedral	\checkmark	1 shape & tick
BeCl ₂	Linear		1 shape & no tick
CH₃CI	(Distorted)Tetrahedral	\checkmark	1 shape & tick

If shapes are drawn rather than named then penalise first mark gained

[7]

4

Q26. A

[1]

Q27. A

[1]