Mark schemes

Q1.
B

$$
\mathrm{CH}_{4}
$$

Q2.
C

$$
\mathrm{XeF}_{4}
$$

Q3.
A
$\mathrm{H}-\mathrm{O}$

Q4.
D

> They form giant structures.

Q5.
B
SO_{2}

Q6.
D

> silicon dioxide

Q7.
C

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}
$$

Q8.
B
NH_{3}

Q9.
B
graphite

Q10.
A
Kevlar

Q11.
Shapes:
Must show Ip on NCl_{3}

Must have some indication that shape is 3D

Name of shape of $\mathrm{NCl}_{3}=$ Pyramidal
Allow tetrahedral

Bond Angle $=109.5^{\circ}$
Allow 109 - 109.5°
(4 bp and 0 lp) electron pairs repel equally / electron pairs repel to be as far apart as possible

Do not allow atoms repel equally
Allow bonds repel equally

Q12.
D

$$
\mathrm{NH}_{4} \mathrm{Cl}
$$

Q13.

(a) M1 idea that pentan-2-ol has stronger intermolecular forces M1 idea that hydrogen bonds are stronger than van
der Waals' forces
Penalise M1 for any reference to idea of breaking covalent bonds

M2 pent-1-ene has van der Waals' forces (only)
M2 allow London forces or temporary/induced dipole forces or vdW forces for van der Waals' forces

M3 pentan-2-ol (also) has hydrogen bonds
M3 Ignore reference to dipole-dipole forces in pentan-2-ol
(b) M1 reagent = conc sulfuric acid or conc phosphoric acid M1 penalise incorrect name or formula (even if both name and formula are given)

M2 condition $=$ hot $/$ temperature in range $150-200^{\circ}(\mathrm{C})$

M2 allow high temperature
M2 reagent must indicate an acid in some way in order for M2 to be awarded
M1/2 allow 1 mark if $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ given as reagent and conc(entrated) given as condition

M3 curly arrow from lone pair on alcohol O to H^{+}
M3-5
penalise M3/4/5 for any additional arrow(s) in
addition to the correct one at each stage
If incorrect reactant (or product if shown), maximum
2 marks of M3-5
Alternatives for M3

M4 curly arrow from C-O bond to O on correct intermediate

M5 arrow from $\mathrm{C}-\mathrm{H}$ bond on C 1 to $\mathrm{C}-\mathrm{C}$ bond between C 1 and C 2 on correct carbocation
allow M4 and M5 concurrent:

Q14.

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

Level 3	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.
Level 2	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.
Level 1 mark	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. 1-2 marks
Answer includes isolated statements and these are presented in a logical order.	
Level 0	$\mathbf{0}$ marks Insufficient correct chemistry to gain a mark.
$\mathbf{0}$ marks	

Indicative chemistry content

Stage 1 electron pairs

1 XeF 4 4BP and 2LP around Xe
$1 \mathrm{~b} \mathrm{PF}_{3} 3 B P$ and 1 LP around P

Stage 2 explanation of shapes

$2 \mathrm{a} \mathrm{XeF}_{4}$ is square planar
Or

$2 \mathrm{~b} \mathrm{PF}_{3}$ is pyramidal (allow tetrahedral)
Or

2c Electron pairs repel as far as possible or Lone pair repels more than bonding pairs

Stage 3 IMF

The relative strength of the intermolecular forces in the molecules must be explained to gain maximum marks.
3a XeF_{4} has vdw forces and PF_{3} has dipole-dipole forces (and vdw)
3b Stronger/more intermolecular forces in XeF_{4}
3c Due to larger M_{r} or more electrons or larger molecules or packs more closely together

Q15.
A

Q16.
(a) Fluoride ion has (two) fewer protons/lower nuclear charge Do not allow fluorine, but allow fluorine ion. Any reference to different numbers of electrons in the ions loses M1

Weaker attraction between nucleus and (outer) electrons
Allow answers in terms of sodium ion but must be explicit.
Ignore references to atomic radius
(b) (Electrostatic) forces of attraction between oppositely charged ions/ Na^{+}and F^{-}

Mention of IMF, covalent, macromolecular, metallic, electronegativity of ions loses both marks

Lots of energy needed to overcome/break forces
Allow strong ionic bonding
Allow strong forces/bonds of attraction (need to be broken)

1
(c) Type of Bond: Coordinate bond / dative (covalent) bond

If just covalent, then do not award M1 but mark on
1
Explanation: A (lone) pair of electrons is donated from F
Allow both electrons (in the shared pair) come from F
(d)

Shape	$\left[\begin{array}{ccc} & \mathrm{F} \\ & \\ \mathrm{F} & & \\ \mathrm{F} & \mathrm{Sb} & \mathrm{F} \\ & & \\ & \mathrm{F}\end{array} \mathrm{F}^{\text {a }}\right.$	$\left[\mathrm{H}^{\mathrm{xx}} \mathrm{F}^{\times x} \mathrm{C}_{\mathrm{H}}\right]^{+}$
Name of shape	Octahedral	Bent / V-shaped / angular

Lone pairs on $\mathrm{H}_{2} \mathrm{~F}^{+}$are essential (can be shown in lobes) Ignore missing charges
Mark independently
(e) $\quad \Delta \mathrm{H}=\Sigma \Delta \mathrm{H}$ (Bonds broken) $-\Sigma \Delta \mathrm{H}$ (Bonds Formed)

Allow M1 if 2785 and 1996 seen (or allow M1 if 1961 and 1172 seen)
$-179=2(412)+837+2(562)-[348+4(412)+2(\mathrm{C}-\mathrm{F})]$
$-179=2785-(1996+2(\mathrm{C}-\mathrm{F}))$
$2(C-F)=968$
M3 consequential on any M2 if it is clear that M2 is for 2(C-F)
$C-F=484$
-484 scores 2

Q17.
A

Q18.
C

Q19.
D

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}
$$

Q20.

M1 two lone pairs on each O atom and
$\overline{\delta+}$ and δ - on each H-O bond

M2 dotted/broken line shown between lone pair on one molecule and the correct H on another

M3 O........H-O in straight line, dependent on M2 Ignore any partial charges on $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{O}$ bonds For straight line in M3, allow a deviation of up to 15°

If a different molecule containing hydrogen bonding due to O-H bond drawn (e.g. methanol, water) or an incorrect attempt at the structure of ethanol, then maximum of 2 marks (i.e. only penalise if would score all three marks otherwise)
(b) Hydrogen bonds (between ethanol molecules)
(permanent) dipole-dipole OR van der Waals force (between methoxymethane molecules)

Allow vdW

Hydrogen bonds are stronger/est intermolecular force
Allow more energy to break/overcome hydrogen bonding Allow converse arguments
(c)

POCl_{3} : allow any shape showing 1 double bond between P and O and $3 \mathrm{P}-\mathrm{Cl}$ bonds
1
ClF_{4} : allow any shape showing $4 \mathrm{Cl}-\mathrm{F}$ bonds and 2 lone pairs
(distorted) Tetrahedral
Square planar
90°

Q21.
D

Q22.
(a)

Allow diagram with 2 bonds and 3 lone pairs

Linear
180°
(b) Lone pairs repel more than bond pairs

Allow idea of reducing bond angle
bond angle will be lower (than regular tetrahedral angle) / bond angle of 103-106 ${ }^{\circ}$
(c) Van der Waals forces

Allow London forces, dispersion forces, induced dipole-dipole
Apply List for M1.
Allow M2 if vdW mentioned in M1, otherwise CE=0
(Uneven distribution of electrons in) one molecule induces dipole in neighbouring/another/nearby molecule
symmetrical molecule / dipoles cancel
OR
no hydrogens bonded to F (N or O), therefore no hydrogen bonding

Q23.
C

Q24.
D

Q25.
(a) Power of an atom to attract a pair of electrons in a covalent bond.

Allow power of an atom to attract a bonding/shared pair of electrons
Allow power of an atom to withdraw electron
density from a covalent bond
Not lone pair Not Element
(b) Difference in electronegativity leads to bond polarity

If chloride (ions) mentioned then $C E=0$
(dipoles don't cancel therefore the molecule has an overall permanent dipole) and there is an attraction between $\partial+$ on one molecule and ∂ - on another
partial charges should be correct if shown and can score M2 from diagram
(c)

SiH_{4}	Tetrahedral		

			no tick
PH_{3}	Pyramidal (trigonal) Allow tetrahedral	\checkmark	 tick
BeCl_{2}	Linear		 no tick
$\mathrm{CH}_{3} \mathrm{Cl}$	(Distorted)Tetrahedral	\checkmark	 tick

If shapes are drawn rather than named then penalise first mark gained

Q26.
A

Q27.
A

